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Presentation Plan

 Advanced MPI Topics
 Parallel I/O
 One sided communication

 Brief introduction to PETSc library with a
CFD example run on thousands of
processors
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MPI-1
 MPI is a message-passing library interface standard.

 Specification, not implementation
 Library, not a language
 Classical message-passing programming model

 MPI was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
 2-year intensive process

 Implementations appeared quickly and now MPI is
taken for granted as vendor-supported software on
any parallel machine.

 Free, portable implementations exist for clusters
(MPICH, LAM, OpenMPI) and other environments
(MPICH)
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MPI-2
 Same process of definition by MPI Forum
 MPI-2 is an extension of MPI

 Extends the message-passing model.
 Parallel I/O
 Remote memory operations (one-sided)
 Dynamic process management

 Adds other functionality
 C++ and Fortran 90 bindings

 similar to original C and Fortran-77 bindings

 Language interoperability
 MPI interaction with threads
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MPI-2 Implementation Status

 Most parallel computer vendors now
support MPI-2 on their machines
 Except in some cases for the dynamic

process management functions, which
require interaction with other system
software

 Cluster MPIs, such as MPICH2 and
LAM, support most of MPI-2 including
dynamic process management
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Parallel I/O
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What does Parallel I/O Mean?

 At the program level:
 Concurrent reads or writes from

multiple processes to a common file
 At the system level:

 A parallel file system and hardware
that support such concurrent access
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Why MPI is a Good Setting
for Parallel I/O

 Writing is like sending and reading is like
receiving.

 Any parallel I/O system will need:
 collective operations
 user-defined datatypes to describe both memory and

file layout
 communicators to separate application-level message

passing from I/O-related message passing
 non-blocking operations

 lots of MPI-like machinery
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Collective I/O and MPI
 A critical optimization in parallel I/O
 All processes (in the communicator) must call the collective I/O

function
 Allows communication of “big picture” to file system

 Framework for I/O optimizations at the MPI-IO layer
 Basic idea: build large blocks, so that reads/writes in I/O system

will be large
 Requests from different processes may be merged together
 Particularly effective when the accesses of different processes are

noncontiguous and interleaved

Small individual
requests

Large collective
access
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Collective I/O Functions
 MPI_File_write_at_all, etc.

 _all indicates that all processes in the group specified
by the communicator passed to MPI_File_open will
call this function

 _at indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearer
code than using a separate “seek” call

 Each process specifies only its own access
information — the argument list is the same as for
the non-collective functions
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The Other Collective I/O Calls

 MPI_File_seek
 MPI_File_read_all
 MPI_File_write_all
 MPI_File_read_at_all
 MPI_File_write_at_all
 MPI_File_read_ordered
 MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O
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Example: Distributed Array Access
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Level-0 Access
 Each process makes one independent read request for each

row in the local array (as in Unix)

call MPI_File_open(..., file, ...,fh,ierr)
do i=1, n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read(fh, a(i,0),...,ierr)

enddo
call MPI_File_close(fh, ierr)
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Level-1 Access
 Similar to level 0, but each process uses collective I/O functions

   call MPI_File_open(MPI_COMM_WORLD, file,&
               ..., fh, ierr)
do i=1,n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read_all(fh, a(i,0), ...,&

                           ierr)
enddo
call MPI_File_close(fh,ierr)
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Level-2 Access
 Each process creates a derived datatype to describe the

noncontiguous access pattern, defines a file view, and calls
independent I/O functions

    call MPI_Type_create_subarray(..., &
                        subarray, ..., ierr)

call MPI_Type_commit(subarray, ierr)
  call MPI_File_open(..., file,..., fh, ierr)
  call MPI_File_set_view(fh, ..., subarray,&

         ..., ierr)
call MPI_File_read(fh, A, ..., ierr)
call MPI_File_close(fh, ierr )
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Level-3 Access
 Similar to level 2, except that each process uses collective I/O

functions

    call MPI_Type_create_subarray(..., &
              subarray, ierr )
call MPI_Type_commit(subarray, ierr )

  call MPI_File_open(MPI_COMM_WORLD, file,&
      ..., fh, ierr )

  call MPI_File_set_view(fh, ..., subarray,&
..., ierr )

call MPI_File_read_all(fh, A, ..., ierr)
call MPI_File_close(fh,ierr)
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The Four Levels of Access
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Processes3210

Level 0

Level 1

Level 2

Level 3

18

Jazz LCRC

 Optimizations
 Given complete access information, an

implementation can perform optimizations
such as:
 Data Sieving: Read large chunks and extract what

is really needed
 Collective I/O: Merge requests of different

processes into larger requests
 Improved prefetching and caching
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Distributed Array Access: Read
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512
20
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Distributed Array Access: Write
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512
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Portable File Formats
 Ad-hoc file formats

 Difficult to collaborate
 Cannot leverage post-processing tools

 MPI provides external32 data encoding
 High level I/O libraries

 netCDF and HDF5
 Better solutions than external32

 Define a “container” for data
 Describes contents
 May be queried (self-describing)

 Standard format for metadata about the file
 Wide range of post-processing tools available
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File Interoperability in MPI-IO
 Users can optionally create files with a portable binary

data representation
 “datarep” parameter to MPI_File_set_view
 native - default, same as in memory, not portable
 external32 - a specific representation defined in

MPI, (basically 32-bit big-endian IEEE format), portable
across machines and MPI implementations

 internal – implementation-defined representation
providing an implementation-defined level of
portability
 Not used by anyone we know of…
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Higher Level I/O Libraries
 Scientific applications work with structured

data and desire more self-describing file
formats

 netCDF and HDF5 are two popular “higher
level” I/O libraries
 Abstract away details of file layout
 Provide standard, portable file formats
 Include metadata describing contents

 For parallel machines, these should be built on
top of MPI-IO
 HDF5 has an MPI-IO option

 http://hdf.ncsa.uiuc.edu/HDF5/
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Parallel netCDF (PnetCDF)
 (Serial) netCDF

 API for accessing multi-dimensional
data sets

 Portable file format
 Popular in both fusion and climate

communities
 Parallel netCDF

 Very similar API to netCDF
 Tuned for better performance in today’s

computing environments
 Retains the file format so netCDF and

PnetCDF applications can share files
 PnetCDF builds on top of any MPI-IO

implementation

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM SP
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Exchanging Data with RMA
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Remote Memory Access in MPI-2
(also called One-Sided Operations)

 Goals of MPI-2 RMA Design
 Balancing efficiency and portability across a

wide class of architectures
 shared-memory multiprocessors
 NUMA architectures
 distributed-memory MPP’s, clusters
 Workstation networks

 Retaining “look and feel” of MPI-1
 Dealing with subtle memory behavior issues:

cache coherence, sequential consistency
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Mesh Communication
 Recall how we designed the parallel

implementation
 Determine source and destination data

 Do not need full generality of send/receive
 Each process can completely define what data needs to

be moved to itself, relative to each processes local mesh
 Each process can “get” data from its neighbors

 Alternately, each can define what data is needed by the
neighbor processes
 Each process can “put” data to its neighbors
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Remote Memory Access

 Separates data transfer from indication of
completion (synchronization)

 In message-passing, they are combined

store
send receive

load

Proc 0           Proc 1 Proc 0            Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or
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Remote Memory Access
Windows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

=  address spaces =  window object

window
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Basic RMA Functions for
Communication

 MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
 Collective operation
 Creates window object

 MPI_Win_free deallocates window object

 MPI_Put moves data from local memory to remote memory
 MPI_Get retrieves data from remote memory into local memory
 MPI_Accumulate updates remote memory using local values
 Data movement operations are non-blocking
 Subsequent synchronization on window object needed to

ensure operation is complete

31

Jazz LCRC

Send vs. Put

 MPI_Put can be
much faster that
MPI Point-to-
point
 4 neighbor

exchange on SGI
Origin

MPI Put

MPI_Isend
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Advantages of RMA
Operations

 Can do multiple data transfers with a
single synchronization operation

 Some irregular communication patterns
can be more economically expressed

 Can be significantly faster than
send/receive on systems with hardware
support for remote memory access, such
as shared memory systems
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Irregular Communication
Patterns with RMA

 If communication pattern is not known
a priori, the send-recv model requires an
extra step to determine how many
sends-recvs to issue

 RMA, however, can handle it easily
because only the origin or target process
needs to issue the put or get call

 This makes dynamic communication
easier to code in RMA
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RMA Window Objects
MPI_Win_create(base, size, disp_unit,
info,

               comm, win)
 Exposes memory given by (base, size) to

RMA operations by other processes in comm
 win is window object used in RMA operations
 disp_unit scales displacements:

 1 (no scaling) or sizeof(type), where window is
an array of elements of type type

 Allows use of array indices
 Allows heterogeneity
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RMA Communication Calls
 MPI_Put - stores into remote memory

 MPI_Get - reads from remote memory

 MPI_Accumulate - updates remote memory

 All are non-blocking:  data transfer is described, maybe
even initiated,  but may continue after call returns

 Subsequent synchronization on window object is
needed to ensure operations are complete
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The Synchronization Issue

 Issue: Which value is retrieved?
 Some form of synchronization is required

between local load/stores and remote
get/put/accumulates

 MPI provides multiple forms

local
stores

MPI_Get
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Synchronization with Fence

Simplest methods for synchronizing on window objects:
 MPI_Win_fence - like barrier

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)
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PETSc
Portable Extensible Toolkit for

Scientific Computing
 http://www.mcs.anl.gov/petsc
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The Role of PETSc

 Developing parallel, non-trivial PDE
solvers that deliver high performance
is still difficult and requires months (or
even years) of concentrated effort.

 PETSc is a toolkit that can ease these
difficulties and reduce the
development time, but it is not a black-
box PDE solver nor a silver bullet.

40

Jazz LCRC

Overview of PETSc
(http://www.mcs.anl.gov/petsc)

 Gives relatively high-level expression to
preconditioned iterative linear solvers,
and Newton iterative methods

 Ports wherever MPI ports; committed to
progressive MPI tuning

 Permits great flexibility (through object-
oriented philosophy) for algorithmic
innovation

 Callable from FORTRAN77, C, and C++
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Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

PETSc Structure
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What is not in PETSc?

 Higher level representations of PDEs
 Unstructured mesh generation and manipulation
 Discretizations

 Load balancing
 Sophisticated visualization capabilities
 Optimization and sensitivity

But PETSc does interface to external software that
provides some of this functionality.

PETSc Structure
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PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control:
User Code/PETSc Library
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PETSc Objects

 Vectors
 Sequential and parallel

 Matrices
 Sequential and parallel

 Linear Solvers
 ksp, preconditioners

 Nonlinear Solvers
 Time integration
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Vectors

 What are PETSc vectors?
 Fundamental objects for storing field solutions,

right-hand sides, etc.
 Each process locally owns a subvector of

contiguously numbered global indices
 Create vectors via

 VecCreate(MPI_Comm,Vec *)
 MPI_Comm - processes that share the vector

 VecSetSizes( Vec, int, int )
 number of elements local to this process
 or total number of elements

 VecSetType(Vec,VecType)
 Where VecType is

 VEC_SEQ, VEC_MPI, or VEC_SHARED

 VecSetFromOptions(Vec) lets you set the type at
runtime

data
objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1
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Creating  a Vector

Vec x;

int n;
…

PetscInit ialize( &arg c,&arg v, ( char*) 0 ,help) ;
PetscOptionsGetInt(PETSC_ NULL,"-
n",&n,PETSC_ NULL) ;

…
VecCreate( PETSC_ COMM_ WORLD,&x) ;

VecSetSizes( x,PETSC_ DECIDE,n) ;
VecSetType( x,VEC_ MPI) ;

VecSetFromOptions( x) ;

Global size

PETSc determines local size

Use PETSc to get value from
command line
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How Can We Use a PETSc
Vector

 PETSc supports “data structure-neutral” objects
 distributed memory “shared nothing” model
 single processors and shared memory systems

 PETSc vector is a “handle” to the real vector
 Allows the vector to be distributed across many processes
 To access the elements of the vector, we cannot simply do

  for (i=0; i<n; i++) v[i] = i;
 We do not require that the programmer work only with the

“local” part of the vector; we permit operations, such as setting
an element of a vector, to be performed globally
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Vector Assembly

 A three step process
 Each process tells PETSc what values to set or add to a vector

component.  Once all values provided,
 Begin communication between processes to ensure that values end

up where needed
 (allow other operations, such as some computation, to proceed)
 Complete the communication

 VecSetValues(Vec,…)
 number of entries to insert/add
 indices of entries
 values to add
 mode: [INSERT_VALUES,ADD_VALUES]

 VecAssemblyBegin(Vec)
 VecAssemblyEnd(Vec)
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Selected Vector Operations
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A Complete PETSc Program

# include petscvec.h
int m ain( int argc,char **argv)
{
  Vec x;
  int  n =  2 0 , ierr;
  PetscTruth f lg ;
  PetscScalar one =  1 .0 ,  dot;

  PetscInitialize( &argc,&argv,0 ,0 ) ;
  PetscOptionsGetInt(PETSC_ NULL,"-n",&n,PETSC_ NULL) ;
  VecCreate( PETSC_ COMM_ WORLD,&x) ;
  VecSetSizes( x,PETSC_ DECIDE,n) ;
  VecSetFromOptions( x) ;
  VecSet( &one,x) ;
  VecDot( x,x,&dot) ;
  PetscPrintf( PETSC_ COMM_ WORLD,"Vector leng th % dn",( int) dot) ;
  VecDestroy( x) ;
  PetscFinalize( ) ;
  return 0 ;
}
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Matrices
 What are PETSc matrices?

 Fundamental objects for storing linear operators (e.g., Jacobians)
 Create matrices via

 MatCreate(…,Mat *)
 MPI_Comm - processes that share the matrix
 number of local/global rows and columns

 MatSetType(Mat,MatType)
 where MatType is one of

 default sparse AIJ: MPIAIJ, SEQAIJ
 block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ
 symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
 block diagonal: MPIBDIAG, SEQBDIAG
 dense: MPIDENSE, SEQDENSE
 matrix-free
 etc.

 MatSetFromOptions(Mat) lets you set the MatType at runtime.
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Parallel Matrix Distribution

MatGetOwnershipRange(Mat A, int *rstart, int *rend)
 rstart:   first locally owned row of global matrix
 rend -1:  last locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4
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Matrix Assembly Example
With Parallel Assembly

Mat      A;
int        column[3], i, start, end,istart,iend;
double value[3];
…
MatCreate(PETSC_ COMM_ WORLD,
                  PETSC_ DECIDE,PETSC_ DECIDE,n,n,& A);

MatSetFromOptions(A);

MatGetOwnershipRange(A,& start,& end);
/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) {
    column[0] = i-1; column[1] = i; column[2] = i+1;
    MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points  (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

Choose the global
Size of the matrix

Let PETSc decide how
to allocate matrix
across processes
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Linear Solvers

 Krylov Methods
 Using PETSc linear algebra, just add:

 KSPSetOperators(), KSPSetRhs(),
KSPSetSolution()

 KSPSolve()
 Preconditioners must obey PETSc interface

 Basically just the KSP interface
 Can change solver dynamically from the

command line
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Nonlinear Solvers

 Using PETSc linear algebra, just add:
 SNESSetFunction(), SNESSetJacobian()
 SNESSolve()

 Can access subobjects
 SNESGetKSP()
 KSPGetPC()

 Can customize subobjects from the cmd line
 Could give –sub_pc_type ilu, which would set the

subdomain preconditioner to ILU

Integration
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Debugging

 -start_in_debugger  [gdb,dbx,noxterm]
 -on_error_attach_debugger

[gb,dbx,noxterm]
 -on_error_abort
 -debugger_nodes 0,1
 -display machinename:0.0

Support for parallel debugging

When debugging, it is often useful to place
a breakpoint in the function PetscError( ).

debugging and errors
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Profiling and Performance
Tuning

 Integrated profiling using -log_summary
 User-defined events

 Profiling by stages of an application

Profiling:

Performance Tuning:

 Matrix optimizations

 Application optimizations
 Algorithmic tuning
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CFD Example: PETSc-FUN3D

 Based on “legacy” (but contemporary) NASA CFD
application, with significant F77 code reuse

 Portable, message-passing library-based parallelization,
runs on NT boxes through Tflop/s ASCI platforms

 Simple multithreaded extension (for SMP Clusters)
 Sparse, unstructured data, implying memory

indirection with only modest reuse
 Wide applicability to other implicitly discretized

multiple-scale PDE workloads — of interagency,
interdisciplinary interest
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Euler Simulation
 3D transonic flow over ONERA

M6 wing, at 3.06º angle of attack
(exhibits λ-shock at M = 0.839)

 Solve

     where

ρ = density, u = velocity, p =
pressure
E = energy density
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PETSc-FUN3D Code –
Parallelization Approach

 Follow the “owner computes” rule under the dual
constraints of minimizing the number of messages
and overlapping communication with computation

 Each processor “ghosts” its stencil dependences in
its neighbors

 Ghost nodes ordered after contiguous owned nodes
 Domain mapped from (user) global ordering into

local orderings
 Scatter/gather operations created between local

sequential vectors and global distributed vectors,
based on runtime connectivity patterns
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Different Orderings
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 Solving Unstructured Mesh
Problems in Serial

 makes them more memory intensive
 reduces the locality in data reference

patterns (which is required to get good
cache performance)

 needs high memory bandwidth since
cache lines might be loaded multiple times

 requires lot of integer operations that
make these solvers more susceptible to
run into operation issue limitations
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Solving Unstructured Grid
Problems in Parallel:

Main Issues
 SPMD parallelization of unstructured

grid solvers is complicated by the fact that
no two interprocessor data dependency
patterns are alike

 The user-provided global ordering may
be incompatible with the subdomain-
contiguous ordering required for high
performance and convenient SPMD
coding

64

Jazz LCRC

Time-Implicit Newton-Krylov-Schwarz (ΨNKS)
For nonlinear robustness, NKS iteration is wrapped in time-stepping

for (l = 0; l < n_time; l++) { # n_time ~ 50
select time step
for (k = 0; k < n_Newton; k++) { # n_Newton ~ 1
       compute nonlinear residual and Jacobian

               for (j = 0; j < n_Krylov; j++) {                     # n_Krylov ~ 60
             forall (i = 0; i < n_Precon ; i++) {

                             solve subdomain problems concurrently
               } // End of loop over subdomains
               perform Jacobian-vector product
               enforce Krylov basis conditions
               update optimal coefficients
               check linear convergence
              } // End of linear solver
              perform DAXPY update
              check nonlinear convergence
        } // End of nonlinear loop
} // End of time-step loop
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Primary PDE Solution Kernels
 Vertex-based loops

 state vector and auxiliary vector updates
 Edge-based “stencil op” loops

 residual evaluation
 approximate Jacobian evaluation
 Jacobian-vector product (often replaced with matrix-free form,

involving residual evaluation)
 Sparse, narrow-band recurrences

 approximate factorization and back substitution

 Vector inner products and norms
 orthogonalization/conjugation
 convergence progress and stability checks
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Algorithmic Tuning for NKS
Solver

 Continuation parameters: discretization order, initial
timestep, timestep evolution

 Newton parameters: convergence tolerance,
globalization strategy, Jacobian refresh frequency

 Krylov parameters: convergence tolerance, subspace
dimension, restart number, orthogonalization
mechanism

 Schwarz parameters: subdomain number, subdomain
solver, subdomain overlap, coarse grid usage

 Subproblem parameters: fill level, number of sweeps
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Sequential Performance of
PETSc-FUN3D
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Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache
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Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache
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BlueGene Per-Processor
Performance

 Insignificant loss in performance due to parallelism even for
strong scaling
 16% of peak on 128 processor vs. 14% on 2048 processors
 Machine mode changes from coprocessor to virtual node

 In the overall parallel performance, poor per-processor part is
the real “culprit” and not the scalability
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Conclusions

72

Jazz LCRC

Designing Parallel Programs
 Common theme – think about the “global”

object, then see how MPI can help you
 Solve a bigger problem
 Cut down the execution time

 Also specify the largest amount of
communication or I/O between
“synchronization points”
 Computation to communication ratio
 Collective and noncontiguous I/O
 Point to point vs. RMA
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MPI
 MPI is a proven, effective, portable parallel

programming model
 MPI has succeeded because

 rich features
 control on data placement (critical for performance)
 complex programs are no harder than easy ones
 open process for defining MPI led to a solid design
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PETSc Library

 PETSc provides scalable linear and
nonlinear solvers
 convenient algorithmic experimentation
 portable wherever MPI is available
 used in a variety of application areas

 From a performance standpoint, parallel
programming is easy but sequential
programming is difficult!
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